
NASA 

m 

N 
iu 
d 
z + 
4 
c/) 
4 
z 

TECHNICAL NOTE 

W 
m 
N 

HEAT TRANSFER FOR LAMINAR SLIP FLOW 
OF A RAREFIED GAS I N  A PARALLEL-PLATE 
CHANNEL OR A CIRCULAR TUBE WITH 
UNIFORM WALL TEMPERATURE 

by Robert M .  Inman 

Lewis Research Center 
CleueZand, Ohio 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1964 



TECH LIBRARY KAFB. NM 

I llllllHlllllllllllll111111111 lllrllillml 
0254352 

HEAT TRANSFER FOR LAMINAR SLIP FLOW O F  A RAREFIED GAS IN A 

PARALLEL-PLATE CHANNEL OR A CIRCULAR TUBE WITH 

UNIFORM WALL TEMPERATURE 

By Robert  M. Inman 

Lewis Research  Center  
Cleveland, Ohio 

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Office of Technical Services, Department of Commerce, 
Washington, D.C. 20230 -- Price $1.00 



H!UT TRA.NBER FOR LAMLNAR SUP FLOW OF A RAREFIED GAS IN A 

PARALz;EL-PLATE CHANNEL OR A CIRCULAR TLTBF: WITH 

by Robert M. Inman 

L e w i s  Research Center 

An analysis has been made t o  determine the  e f fec ts  of low-density phenom- 

Consideration is  
ena on the  heat-transfer charac te r i s t ics  f o r  laminar flow i n  a para.lle1-plate 
channel or i n  a. c i rcu lar  tube with uniform w a l l  temperature. 
given t o  the s l ip- f low regime wherein the  major rarefact ion e f f ec t s  a re  dis- 
played as veloci ty  and temperature jumps a t  the  conduit w a l l s .  The r e s u l t s  
apply along the  en t i r e  length of the conduit. The solutions contain a se r i e s  
expansion, and ana ly t ica l  expressions f o r  the  complete s e t  of eigenvalues and 
eigenfunctions f o r  the  problems are  presented. The r e s u l t s  give the  tempera- 
t u re  of the gas adjacent t o  the  W a l l ,  t he  w a l l  heat f lux,  and the Nusselt num- 
bers f o r  the conduits f o r  various values of t he  ra refac t ion  parameters- 

IDTRODUCTION 

I n  recent yea.rs considerable i n t e r e s t  has developed i n  the  study of the  
heat-transfer charac te r i s t ics  of r a r e f i ed  gases flowing inside conduits. This 
i n t e re s t  i n  the  ra ref ied  gas mode of heat t ransfer  has been spurred by the  ad- 
vent of high-alt i tude f l i g h t  and by the  low-density environment that is being 
encountered with increa.sing frequency i n  present day technology. Under the  
conditions of high-alt i tude f l i g h t ,  f o r  example, t he  gas f low inside a conduit 
may be su f f i c i en t ly  r a re f i ed  s o  t h a t  the  appropriate mean f r e e  path becomes too 
large f o r  the  use of the  usual continuum-transfer equations but not large 
enough f o r  free-molecule or t r ans i t i on  concepts t o  apply. 

I n  this regime of s l i g h t  gas rarefact ion,  termed the  slip-flow regime, 
which i s  the gas regime considered i n  this invest igat ion,  the gas adja.cent t o  a 
s o l i d  surface no longer assumes the  veloci ty  and temperature of t h e  surface, 
Instead, the  gas s l i p s  along the  surface,  and, i n  addition, there  i s  a jump i n  
temperature between the  surface and the  adjacent gas. The e f f ec t s  of these 
rarefact ion phenomena on the  heat- t ransfer  charac te r i s t ics  f o r  laminar flow in -  
s ide ducts and tubes are  of p rac t i ca l  i n t e r e s t  t o  t he  engineer concerned with 
the design and analysis of compact heat-exchange equipment f o r  high-altitude- 
f l i g h t  or low-density-environment applications. 



Two geometries that are  commonly encountered i n  pract ice  a re  selected f o r  
analysis,  the  para l le l -p la te  channel and the  c i r cu la r  tube. A uniform-wa.11- 
temperature boundary condition is  considered. There are many prac t ica l  situa- 
t ions  t h a t  require t h e  design and analysis of apparatus f o r  heating or cooling 
a gas flowing through a conduit with the  conduit w a l l s  maintained a t  a constant 
temperature, f o r  example, flow through compact heat exchangers where one f l u i d  
i s  a t  constant temperature became of a change of phase or  flow through heat 
exchangers where the  capacity r a t e  of the  gas i s  s o  much lower than that of the  
other f l u i d  that an e s sen t i a l ly  constant wa.ll temperature i s  attained. 

The heat- t ransfer  charac te r i s t ics  of s l i g h t l y  r a re f i ed  gases flowing in-  
s ide  a para.lle1-plate channel or inside a c i r cu la r  tube have been considered i n  
three previous papers- I n  reference 1 t h e  e f f ec t s  of s l i g h t  rarefact ion on the  
f u l l y  developed heat- t ransfer  charac te r i s t ics  f o r  laminar f l o w  i n  tubes were 
s tudied analyt ical ly .  The analysis w a s  ca r r ied  out f o r  both uniform w a l l  heat 
f l u x  and uniform w a l l  temperature. 

perature jumps a t  a wa.11 were obtained'by a physical derivation, and the  re -  
sults were used t o  determine the  f u l l y  developed heat t r ans fe r  i n  a tube with 
uniform w a l l  heat flux. 

I n  reference 2 t h e  e f f ec t s  of second-order terms on the  veloci ty  and tem- 

The r e su l t s  of t h e  foregoing analyses are  l imited t o  t h e  region where the  
temperature d is t r ibu t ion  i s  f u l l y  developed, and, hence , t he  solutions do not 
apply i n  the thermal entrance region. 
of the  e f fec ts  of s l i g h t  gas ra refac t ion  on the  heat- t ransfer  charac te r i s t ics  
f o r  f u l l y  developed laminar flow i n  a para l le l -p la te  channel or  i n  a c i rcu lar  
tube with a uniform wall  heat f lux.  The r e s u l t s  obtained f o r  both geometries 
a re  applicable along the  e n t i r e  length of the  conduit, t h a t  is, i n  the  thermal 
entrance region as wel l  as far downstream. The solutions contain a se r i e s  ex- 
pansion that a r i s e s  i n  connection with the  entrance-region heat-transfer analy- 
sis, and ana ly t ica l  expressions f o r  the  eigenvalues and constants a re  pre- 
sented. Numerical solut ions of these important quant i t ies  a re  also obtained 
through the  use of an electronic  (IEN 7094) computer, and comparisons a re  made 
t h a t  show very good agreement between the  two methods of computation. 

Reference 3 contains an ana ly t ica l  study 

The present investiga.tion i s  concerned with laminar flow of an incompress- 
ib le ,  s l i g h t l y  r a re f i ed  gas i n  a. para l le l -p la te  channel or i n  a c i rcu lar  tube 
with uniform w a l l  temperature. For the  uniform wall-temperature problem, a 
knowledge of the  eigenfunctions and eigenvalues i s  not only necessary i n  the 
entrance region but a l s o  i n  the  f u l l y  developed region (at  l e a s t  the f i rs t  
eigenvalue is  necessary i n  the  f u l l y  developed region). 
p a r a l l e l  p la tes  or i n  t he  tube is  a.ssumed t o  be f u l l y  developed, T h i s  implies 
t h a t  a hydrodynamic entrance length is  present that allows the  gas t o  es tab l i sh  
a f u l l y  developed ve loc i ty  d is t r ibu t ion  before rea.ching the  heated sect ion of 
the  conduit. I n  addition, t he  assumption implies t h a t  the  thermal creep veloc- 
i t y ,  which i s  an addi t ional  ve loc i ty  induced when a ga.s adjacent t o  a surface 
encounters a temperature gradient along the surface ( re f .  4), can be neglected. 
The solutions without t he  inclusion of thermal creep w i l l  then represent the  
zeroth-order solut ions with regard t o  t h i s  effect .  

The flow between the  

This assumption, however, allows the  veloci ty  f i e l d  t o  be determined inde- 
pendently of t he  temperature (whereas the  temperature f i e l d  is a function of 
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t he  veloci ty) ,  and it is believed that the  understanding gained w i l l  lead t o  
more precise and more extensive study. 

The paral le l -plate  channel is  considered first, and two cases of p rac t i ca l  
i n t e r e s t  are examhedf a step change i n  w a l l  temperature at  both p la tes  and a 
s t e p  change i n  w a l l  temperature a t  the  upper p l a t e  only, while t he  lower w a l l  
i s  insulated. The c i r cu la r  tube configuration is  then analyzed f o r  a s t e p  in 
w a l l  temperature. The results obtained f o r  both geometries a re  applicable 
along t h e  en t i r e  length of t h e  passages, 

Before the  energy equation can be solved, t h e  gas veloci ty  d is t r ibu t ion  
m u s t  be known. This has been investigated i n  reference 3 f o r  t he  para l le l -  
p l a t e  channel and i n  references 1 and 4 f o r  t he  c i r cu la r  tube, and the  r e s u l t s  
w i l l  be used i n  the  present study. 

With the ve loc i ty  d is t r ibu t ions  known, the  energy equation can be consid- 
ered. The solutions involve s e r i e s  expansions, and ana ly t i ca l  expressions w i l l  
be derived f o r  t he  eigenvalues and constants as functions of t he  gas rarefac-  
t i o n  parameters. 

RAREFIED GAS FLOW I N  A PAFKLLEL-PLAm CHANNEL 

WITH STEP CHANGE I N  WALL TEMPERATURE 

This portion of t he  analysis i s  concerned with f u l l y  developed laminar 
flow of a s l i g h t l y  r a re f i ed  gas between p a r a l l e l  p la tes  as  i l l u s t r a t e d  i n  f i g -  

ure 1. For x < 0, the  p la tes  
and the gas a re  assumed t o  be 

7 tW T t W  isothermal a t  temperature te; 
whereas f o r  x 2 0, the  w a l l  l-- L _ x  (both the  upper and the  lower, A - - t x -  
or e l s e  the  upper only with the u(y) u(y) 

' -tw Insulated lower w a l l  insulated)  tempera- 

- - 
t t 

- - 
wall t u r e  i s  step-changed t o  a new 

(a) Symmetry number, 2. (b) Symmetry number, 1. value &. ( A l l  symbols a re  
Figure 1. - Physical model and coordinate system for parallel-plate channel. defined in appendix A- 

Energy Equation 

The energy equation f o r  incompressible flow i n  a para l le l -p la te  channel 
can be wri t ten as 

at a2t 
U;5;;=aayz 

To obtain the  equation i n  this form, viscous diss ipat ion and axial heat conduc- 
t i o n  a re  neglected compared with heat conduction i n  t h e  transverse direction. 
It i s  convenient t o  place the  plane y = 0 a t  the  plane of symmetry, t h a t  is, 
a t  the  middle plane of t he  channel i n  case of a s t e p  change i n  temperature a t  
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both w a l l s  ( f ig .  l ( a ) )  and at  the lower w a l l  i n  case of a s t ep  i n  temperature 
at the  upper w a l l  only ( f ig .  l ( b )  ) . 

Both cases can be included i n  the  following development by defining a sym- 
‘5, which i s  a l s o  the  number of w a l l s  step-changed i n  temperature; metry number 

that is, ‘5 = 2 if both w a l l  temperatures are changed, and 0 = 1 if only the  
upper w a l l  temperature i s  changed, t he  lower w a l l  being insulated. 

It i s  a l s o  convenient t o  rewrite equation (1) i n  terms of dimensionless 
variables: then equation (1) i s  given as 

The dimensionless veloci ty  d is t r ibu t ion  
i s  d i f fe ren t  f o r  each value of ox 

f ( 7 )  i s  obtained from reference 4 and 

where A E 5,/2L. The velocity-.sl ip coeff ic ient  E U  has been r e l a t ed  by Max- 
well  t o  other propert ies  of the  system by the  expression (ref.  5) 

2 . 2 3 2  (4)  5, = g 

where g is  the  specular r e f l ec t ion  coeff ic ient  and 2 i s  the mean f r e e  path 

The r e l a t ion  between t h e  average veloci ty  and the  s l i p  veloci ty  may be obtained 
from equation (3) by s e t t i n g  7 = 1 

The dimensionless temperature T i s  defined s o  that a t  the  entrance of the  
heated sect ion the  value of T i s  unity. 

Solution 

Equation ( 2 )  is t o  be solved subject t o  t he  boundary conditions 
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T - 1  a t  5 =I 0 f o r  a l l  7 (entrance condition) 1 
aT a t  71 = o (symmetry) ; S ; ; = O  

( 7 )  

Another e f fec t  of t he  gas rarefact ion enters  through the boundary condition at  
the  channel w a l l ,  which permits a jump between the  w a l l  temperature 
the  adjacent gas temperature tg (ref .  5) 

t, and 

tg - t, = - 0  for 5 > 0 

where 
of t he  system by the expression 

E t  denotes a temperature- jump coeff ic ient ,  r e l a t ed  t o  other properties 

The solut ion of equation ( 2 ) ,  which w i l l  s a t i s f y  conditions ( 7 )  and (a), 
can be found by using a product solut ion t h a t  leads t o  a separation of var i -  
ables. Then the  solut ion f o r  T can be wr i t ten  as 

where the  Yn and pn a r e  the  eigenfunctions and eigenvalues of t he  Sturm- 
Liouville problem 

with the  boundary conditions 

- -  - 0  a t  y = O  dYn 
drl 

The solution of equation ( l l a )  w i l l  be ta.ken up shortly. 

The coeff ic ients  b, a l s o  remain t o  be determined. These a re  evaluated 
t o  s a t i s f y  the condition a t  the  entrance of t he  channel ( 5  = 0 )  

5 
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Using the properties of the Sturm-Liouville system results in 

As shown in detail in appendix B, the integral appearing in the numerator may 
be written as 

whereas the denominator of equation (13a) becomes 

Then the series coefficients are 

This result implies that, once the eigenfunctions 
cients bn of equation (10) may be calculated. Thus, it is apparent that a 
knowledge of the eigenvalues and the eigenfunctions of equation (lla) is essen- 
tial to the temperature solution (eq. (10)). The possibility of determining 
these quantities analytically is one of the interesting aspects of the problem. 
The functions Y,(v) and the corresponding eigenvalues pn are as yet undeter- 
mined. Before a calculation of these quantities is undertaken, however, the 
analysis will be extended to the formulation of several quantities of engineer- 
ing interest. 

neering interest can be determined! 

Yn are known, the coeffi- 

From the temperature distribution (eq. (10) ) , several quantities of engi- 
the axial variation of the gas temperature 
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adjacent t o  the w a l l ,  the  w a l l  heat-flux var ia t ion along the channel length re -  
quired t o  maintain the  w a l l  temperature constant, and the  loca l  Nusselt number 
variation.. The axial var ia t ion  of t h e  gas temperature adjacent t o  the  w a l l  i s  
obtained from equation (10) by se t t i ng  7 = 1 therein.  I n  the  absence of a 
temperature jump ( E t  = 0) ,  it i s  apparent, e i t he r  from equation (8) or from the  
second part of equation ( l l b ) ,  that 
jump ef fec t ,  however, tg f tw. 
from Fourier ' s  l a w  

tg = constant = tw. With a temperature- 
The heat f lux a t  the  w a l l  can be evaluated 

where q i s  defined as the  heat added a t  the w a l l .  Applying this t o  equa- 
t i o n  (10) gives the  r e s u l t  f o r  the  w a l l  heat f lux as a function of posi t ion 
along the channel: 

The Nusselt modulus may be defined by re fer r ing  e i the r  t o  the  hydraulic 
diameter DH, equal t o  4L, o r  t o  a thermal diameter I$, which depends on the 
area of the  heating surface and i n  the  present case i s  equal t o  
The la t ter  def in i t ion  w i l l  be adopted here, s o  that 

8L/0 ( r e f -  6).  

Substi tuting q from equation (16), the  Nusselt modulus may be wr i t ten  as 

To put this i n  a more useful  form, it i s  necessary t o  develop an expression f o r  
(tw - te)/(tw - tb ) .  
%, which may be found f r o m  

TO do this, it i s  necessary t o  know the  bulk temperature 

Tb 
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By introducing the temperature distribution (eq. (10)) into the bulk tempera- 
ture (eq- (20)), the following is obtained; 

m Pl 

The integration has been carried out in equation (B2) with the result 

With this, equation (21) becomes 

n=O 

By substituting equation (22) in equation (la), the expression for the Nusselt 
modulus becomes 

m 

n=O Nu= 

n=O 

This completes the formulation of the equations yielding the important 
engineering quantities. Ekfore numerical values of these quantities ca.n be 
obtained, it is necessary to obtain the solution to equation (lla). 
clear from equations (lla) and (llb) that a different set of eigenvalues and 
eigenfunctions will be obtained for each pair of the rarefaction parameters 
Eu/2L and 5J2L. 

It is 
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Transverse Distribution Function Y( 7 )  

Attention is  now directed t o  the  Sturm-Liouville eigenvalue problem 
(eq. ( l l a ) ) .  The function Y ( 7 )  is the solut ion of this equation, subject t o  
the  boundary conditions (eq. ( l l b )  ) and the  customary normalization convention 
Y ( 0 )  = 14 

For convective heat t ransfer  in laminar continuum channel f low,  Dzung 
(ref .  6 )  and Se l la rs ,  e t  al. (ref.  7) have obtained asymptotic expressions f o r  
t he  eigenvalues and eigenfunctions through t h e  use of the  WKB method. A br ie f  
discussion of the  WKB approximation and i ts  application t o  the  solut ion CrF 
eigenvalue equations i n  quantum theory may be found i n  reference 8. Asymptotic 
formulas f o r  the eigenvalues and eigenfunctions for laminar heat t r ans fe r  t o  
s l i p  flow i n  a para l le l -p la te  channel with uniform w a l l  heat f l u x  have been 
derived 5.n reference 3 by applying this method. 
i n  good agreement with numerical solutions obtained i n  the  course of the  in-  
vestigation. &ce, it i s  of i n t e r e s t  t o  apply t h i s  method t o  the  present 
problem. 

The r e s u l t s  were found t o  be 

I n  accordance with the method of references 6 and 7, a solut ion of the  
following f o m  i s  considered 

Y ( 7 )  = expL4rl)1 ( 24a) 

where 

and, since p is  assumed t o  be large,  only the  f i rs t  two terms of the  previous 
s e r i e s  are  retained. Then it can be shown t h a t  the asymptotic solut ion of 
equation ( l l a )  i s  given by 

where the  coeff ic ients  A and B remain t o  be determined. It is  noteworthy 
tha t ,  f o r  continuum flow (A  = 0) ,  a s ingular i ty  e x i s t s  i n  equation (25) at  
17 = 1 f o r  IJ = 2 and o = 1, since [f{l)] = 0, and also art 7 = 0 for 

O = 1, since [f(0)]A=O = 0. 

te rna t ive  solutions,  va l id  near 7 = 0 and = 1 (refs .  6 and 7).  For s l i p  

A=O 
This behavior has required the  development of a l -  

O = l  
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flow (A 
has no s ingu la r i t i e s  f o r  s l i p  flow. 
ever, (at l e a s t  f o r  the  f irst  few eigenconstants), might be expected t o  dimin- 
i s h  as the  s l i p  Yelocity approaches zero, since the  e f f ec t  of t he  s ingu -  
l a r i t y  f o r  us =i 0 w i l l  undoubtedly come i n t o  play. Conversely, as the s l i p  
veloci ty  increases from zero, equation (25) should become an increasingly more 
reasonable approximation of the  ac tua l  equation, espec ia l ly  as Pn becomes 
large. Since it is ant ic ipated t h a t  the  coef f ic ien ts  A and B are  d i f f e r -  
ent  f o r  the  cases 

O) ,  t he  functions f ( 7 )  a r e  nowhere zero, and hence equation (25) 
The accuracy of t h e  approximation, how- 

3 = 2 and (5 = 1, each case w i l l  be considered separately. 

For t he  case (5 = 2J t h e  coeff ic ients  A and B are determined from the  
q = 0, where Y(q)  

Y(0)  = 1 and 
continuation of equation ( l l a )  t o  the  channel cen t r a l  zone 
can be approximated by the  cosine function and t he  conditions 
(dY/dq)q, = 0 are s a t i s f i e d ;  

Y ( q )  = cos dflm q f o r  72 << 1 ( 2 6 )  

where 
equations (25) and (26) equal f o r  small 
A = B =  [f(0)]1/4/2. 
gives 

f ( 0 )  = u& = (3/2)[(1 + 4A)/(1 3 6A)]. Thus it is found tkt, t o  make 
q, it i s  required t h a t  

Using this r e s u l t  and the  first part of equation (3) 

cos(* 1) (27) 
~ ( 7 )  = (1 -+ 4h)1/4(i -+ 4~ - 72) -1/4 

and 

X 
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The values of the function Y and its slope dY/dq at the upper wall are 
found by setting 
are 

q = 1 in equations (27) and (28), respectivelyj the results 

Y ( 1 )  = -py4 cos 6 

and 

The eigenvalues are determined by the requirement 
Then, with equations (30) and (31) combined in accordance with this relation, 
the eigenvalues are obtained as roots of the characteristic equation 

Y(1)  = -2( St/2L) ( dY/dq)q=l. 

where E, for given values of A and I?, is a constant. The first five roots 
of equation (34) are given in reference 9 for a number of values of 
values of 11 for any given slip velocity us/V are shown in figure 2. The 

E. The 

eigenfunctions corresponding to these 

Ratio of slip to average velocity, u,/O 

Figure 2. - V a l u e  of definite integral for parallel-plate 
channel for any value of ratio of slip to average ve- 
locity. 

eigenvalues will be denoted-by Yn. 
It can be seen that the eigenvalues 
(and hence the eigenfunctions ) depend 
on the two rarefaction parameters 
5d2L and 5t/2LY as previously 
noted. This result differs from that 
obtained for the unif orm-wall-heat- 
flux problem (ref. 3) , where the 
eigenvalues and eigenfunctions were 
dependent only on the parameter 
S&L* 
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To obtain t h e  s e r i e s  coeff ic ients  bn (eq. (14)), it is necessary t o  eval- 
uate the  terms ( a ~ / a p ) ~ = ~  

mined by d i f fe ren t ia t ing  equations (30) and (31), respectively,  with respect 
t o  P. The results may be wri t ten as 

and (a2Y/av aP),=l These expressions a re  deter-  

P=P n P=Pn 

r 1 

Thus, the  coeff ic ients  bn as evaluated f r o m  equation (14) are  given as 

The slope 
nat ively expressed as 

dY/dq evaluated a t  the  wall, given by equation (31), can be a l t e r -  

(1 + 4A)l/4 cos 6, 
( 3 7 )  

It i s  convenient to define a new coeff ic ient  
and ( dY/dv Iv=1’ as 

%, given by the product of b, 

Equations (30), (34), and (38) can be used to calculate  the constants 
Y n ( l ) ,  eigenvalues Pn, and coeff ic ients  B, f o r  given values of SJ2L and 
St/2L. 
calculations w i l l  be delayed u n t i l  a f t e r  t he  unsymmetrical case (5 = 1 has 
been t reated.  

I n  t h e  i n t e r e s t s  of a unif ied presentation of r e su l t s ,  however, such 

For the  unsymmetrical case, t he  formal asymptotic solut ion (eq. (25))  i s  
f i r s t  cont inuedto  the  insulated w a l l  = 0, where again Y ( q )  can be 

1 2  



approximated by the  cosine function 

~ ( 7 )  = c o s [ d m  71 f o r  72 << 1 (26) 

Y(7) = A1/4(7 - 'q2 + c o s ( 4  J) ( 3 9 )  

The coeff ic ients  A and B a re  readi ly  determined t o  be A = B = [f(0)]1/4/2 
so  t h a t  

and 

where 
r 

The function Y and i t s  derivative dY/dq a re  evaluated a t  the upper w a l l  by 
s e t t i n g  7 = 1 i n  equations (39)  and (40), which r e s u l t s  i n  

Y ( 1 )  = cos E ( 4 2 )  

J1 -+/- 
4 A  (43) 

where 

and 

(44) 
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= Il (45) 

The eigenvalues f o r  t h e  present case ( (5  = 1) are determined by the  requirement 
t h a t  Y ( l ) =  -(St/2L)(dY/dq)q=1. Then, by combining equations (42) and (43) i n  
accordance with this requirement, the  eigenvalues 
of the  charac te r i s t ic  equation 

Pn a r e  obtained as roots  

J.5 + (1 + 4A)sin-1 

21-(4~)3/2 
E n  t a n  En = ( 4 ~  + r) 

The expressions (aY/aP)q=l and (a2Y/dP a d q = l ,  necessary for the  eval-  

bn, can be obtained r ead i ly  from the  equations de- 
P=Pn P+n 

uation of t h e  coef f ic ien ts  
veloped s o  far as 

The s e r i e s  coeff ic ients  bn a re  thus given by 

8 A  

bn = '\ 

Equation (43) can be r ecas t  i n t o  t h e  form 

14 



TABLE I, - EIGENVALUES AND CONSTANTS FOR SLIP FLOW IN CHANNEL WITH UNIFORM WALL TEMPEXATURES 

0.1 

Rnalyt ical 

1.431 

4.321 
7.265 
10.28 

.2163 
- - 6028 
.e508 

-1.0195 

- .a120 
2.265 
-3.295 
3.820 

.6475 
-.1968 
.lo59 

- -0654 

1.498 
4.520 
7.545 
10.58 

.0872 
- -2419 
.38 27 

- .5000 

- -6545 
1.811 

-2.869 
3.750 

-8575 
- 2942 
-1691 

-. 1140 

Ratio of slip to average velocity, u,/u 
1/3 I 3/5 

I 
Temperature-jump coefficient, tt/2L 

~ 

0.5333 0.4 1.6 I I 
~~ 

Solution 
.~ 

3 

Numerical 1 Analytical I Numerical 1 Analytical I Numerical 1 Analytical Numerical I 
Symmetry number, 2 

1.168 
4.083 
7.085 
10.14 

-2926 
- e  6917 
-9340 

-1 - 0823 
-1.098 
2.594 

-3.503 
4.060 

1.177 
- -2526 
.1164 

- - 0669 

1.376 
4.394 
7.435 
10.50 

.1900 
- .3907 
.5267 

- .6262 

-1-425 

2.931 
-3.951 
4- 697 

1.228 
- -3412 
.1829 

-.1176 

1.289 
4.010 
6.906 
9.945 

.4045 
- * 9410 
1.185 
-1.264 

-.3795 
.€I835 

-1.110 
1.185 

-4930 
- a  1324 
.0575 

- .0312 

1.420 
4.295 
7.225 

10.23 

-1651 
- - 4540 
.6561 
--7660 

- -3200 
.a500 

-1.230 
1.438 

.6299 
- .1910 
-0986 

- -0605 

0.8128 
3.630 
6.682 
9.794 

-6358 
-1.082 
1 - 227 
-1.293 

- -5961 
1.014 
-1.150 
1.213 

1.096 
-. 1257 
-0438 

- .0218 

1.111 
3.705 
6.645 
9.700 

.5320 
-1.019 
1.123 
-1.151 

-. 6645 
1.270 
-1.408 
1.440 

.7085 
-. 1510 
.0560 

- -0227 
Symmetry number, 1 

1.048 
3.933 
6.966 
10.05 

-4984 
- .7767 
-8696 

' -. 9137 
-. 9345 
1.456 
-1.631 
1.713 

1.147 
- .2032 
.0852 

- .0469 

1.295 
4.005 
6,900 
9.905 

-2790 
-. 6626 
.e387 
-.9272 

-. 6975 
1.658 
-2.099 
2.268 

.e720 
- -2399 

- 1065 
-.0582 

0.9087 
3.602 
6.586 
9.661 

.57 67 
-1.016 
1.120 
-1.153 

-.7208 
1.270 

- 1.400 
1.442 

1 - 124 
- .1635 
-0570 
-.0278 

1.136 
3.904 
6.844 
9.872 

-4206 
-.7503 

-8740 

-. 9063 
-1.052 
1.876 
-2.185 
2.318 

1.180 
- -2508 
.lo63 

-.0570 

0.8750 
3.451 
6.475 
9.581 

.7 640 
-1.135 
1.173 
-1.180 

- .2388 
.3550 

- -3665 
-3692 

- 3639 
- -0507 
.0157 
-.0073 

1.092 
3.675 
6.625 
9.680 

.4648 
- .e669 
-9563 
-.9782 

- 2900 
-5400 
-.5975 
.61L5 

.3950 
- .0815 
-0294 

- -0144 

0.5273 
3.337 
6.417 
9.541 

,8506 
-1.124 
1.164 
-1.176 

- -2658 
-3534 

-. 3635 
-3674 

1.044 
- .0554 
-0154 

- .0073 

0.7149 
3.529 
6.565 
9.648 

-7550 
-. 9491 
.9788 

-. 9886 
-.4722 
,5932 

-. 6118 
-6183 

1.0766 
- .0992 
-0330 

- .0161 
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s o  t h a t  

Equations ( 3 0 ) ,  (34),  and (38), f o r  IS = 2, or equations (42), (46),  and 
( 5 0 ) ,  f o r  
t i o n  e s sen t i a l  t o  t he  determination of the  var ia t ion  i n  the  gas temperature 
adjacent t o  the  w a l l  (eq, (lo)), t he  w a l l  heat-flux var ia t ion  (eq. (16)), and 
the  N u s s e l t  modulus (eq. (23) )  along the length of t h e  channels. These expres- 
sions for the  eigenvalues, eigenfunctions, and coef f ic ien ts  a.re remarkably 
simple i n  form and l ead  t o  r e l a t i v e  ease of computation. The l e v e l  of accuracy 
of the  expressions remains t o  be determined- 

IS = 1, i n  conjunction with f igure  2 (p- 11) contain a l l  the  informa- 

The first four  eigenvalues and important constants are  given i n  t ab le  I 
for several  d i f f e ren t  values of t he  parame'cers us/E and SJ2L f o r  t he  cases 
of a s t e p  change in  temperature a t  both p la tes ,  0 - 2 ,  and a t  the  upper p la te  
on ly  (while the lower w a l l  i s  insulated) ,  IS = 1. The pa r t i cu la r  numerical 

- I  

values chosen f o r  +/E and 

TABLE 11. - EIGENVALUES AND COEF- 

F I C I E N T S  FOR CONTINUUM FLOW I N  

PAFALLELPLATE CHANNEL WITH 

UNIFORM w m  TEMpEIiATLTRE 
[Data from ref. 6.1 

1.372 

4.625 

7.89 

ll. 16 

1.708 

1.138 

.951 

.848 

Symmetry number 

1.557 

4.855 

8.14 

ll. 40 

2.167 

1.434 

1.193 

1.064 

St/ZL correspond t o  values for the  ra refac t ion  
parameter 1 ~ .  -/2pL of 0.0667 and 0.2, 
r = 1.4, Pr = 0.93, g = 1, and a = 1 
Although the  value of 0.2 f o r  the  rarefact ion 
parameter may be outside t h e  slip-flow regime, 
it has been included s ince a t  lower densi t ies ,  
i n  the beginning of t h e  t r a n s i t i o n  regime, p r io r  
findings suggest t h a t  slip-flow solutions may 
remain f a i r l y  good. Results f o r  = 1 
(slug flow) would de f in i t e ly  be outside the  
slip-flow regime, s ince for 
The r e su l t s  f o r  continuum flow 
(Eu/2L = Et/2L = 0) a r e  given i n  t ab le  11 and 
were obtained from reference 6. 

and 0.4. 

us/ii = 1, Z / ~ L  -+ to. 

To check t h e  l e v e l  of accuracy of t he  s l i p -  
flow results, equation [ l l a )  was solved numeri- 
cal ly ,  by the  Runge-Kutta method, on an IBM 7094 
d i g i t a l  computer. The forward integrat ion w a s  
s t a r t e d  by using the  boundary condition 
( eq. ( l l b )  ) at 7 = 0 and the normalization 
convention Yn(O) E 1- The eigenvalues were 
found by t r ia l  and e r ro r  u n t i l  the  second bound- 
a ry  condition of equation ( I l b )  was s a t i s f i e d  
a t  y = 1- The f i r s t  four  eigenvalues and con- 
s t a n t s  a re  given i n  t ab le  I f o r  the  same choice 
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of slip-flow parameters. 

The analytical expressions presented herein were derived on the assumption 
that pn is large and, hence, are valid only in that limit. There is, how- 
ever, substantial agreement between the relevant quantities computed from the 
analytical expressions and the numerical solutions even for values of n as 
low as 3. Although the agre-ement is good for & when uS/C = 315 and fair 
for Y2(1) , Yi(1) , and by it is only fair f o r  6 when us/E = 1/3 and 
somewhat poor for the other quantities. Thus, the extent of agreement depends 
on the parameters us/E and k /2L, the best agreement being at low values of 
St/ZL and higher values of usjE. It is evident from these comparisons, how- 
ever, that the analytical expressions presented here have definite application 
to determining the higher eigenvalues for laminar heat transfer in channels 
under slip-flow conditions. 

With the numerical information in tables I and 11, the variation of the 
temperature of the gas adjacent to the upper wall along the length of the chan- 
nels has been evaluated from equation (10) by setting 
given in figure 3 for (5 = 2 and 1. 

7 = 1, and plots are 

In the absence of rarefaction effects, the difference between the surface 
temperature tw and the contiguous gas temperature t is zero along the 
entire length of the channels. 
tg - tw has nonzero values, decreasing from te - tw with increasing distance 
from the heated section entrance. The effect of an increase in rarefaction is 
to increase tg - tw toward the maximum difference te - tw at any given 
axial location. The direction of this effect is physically reasona.ble, since 

With rarefaction, the femperature difference 

1.0 
0 c 
c c 
W 
U m 

\ 

.--. 
W L 
3 

E -  
E 2  
5 .6 
P T  
,"2 
c m  .- os . 4  
.- m -- 
k7G 
> 3  

c . 2  

\ -c 

0 1  - 
v) 
v) W 

a 
v) c 

- 
.- 

E .- 
n - 

0 

- . 
p 

\ 
- 

.02 .04 .06 .08 .10 0 

I , ,  

Accommodation I 1 -fl 
- coefficient, 

a 

parameter, 

1 - 

.04 .08 .I2 .16 .M 
Dimensionless axial distance, ( x l i ) / R e P r  

(a) Symmetry number, 2. Ib) Symmetry number, 1. 

Figure 3. - Variation of gas temperature adjacent to wall for flow in parallel-plate channel. Specular reflection coeffi- 
cient, 1; rat io of specific heats, 1.4; Prandtl number, 0.73. 
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t h e  temperature jump can be considered as an ef fec t ive  thermal contact r e s i s -  
tance a t  the  gas-surface interface.  The value of t he  accommodation coeff ic ient  
a l so  has an important e f f ec t  on the  var ia t ion  of with a.xial  distance, 
and this is associated with t h e  increase in temperature-jump e f fec t  with a de- 
crease i n  accommodation coeff ic ient .  For both wall-temperature-change situa- 
t ions ,  t he  temperature difference tG - tw varies  s ign i f i can t ly  over approxi- 
mately the  first 10 percent of t h e  amensionless di;tance considered and then 
var ies  more slowly over t he  remaining distance. This r e s u l t  suggests that the 
thermal creep veloci ty ,  which has been neglected i n  the  present investigation, 
would have i t s  grea tes t  e f f ec t  .concentrated i n  t h e  region (x/ZL)/RePr 2 0.01 
f o r  0 = 2, or  (x/ZL)/RePr 5 0.02 f o r  0 = 1, 

tg - tw 

The w a l l  heat-flux var ia t ion  required t o  mainta.in the  w a l l  temperature 
constant has been evaluated from equation (16)  by using t h e  data of tab les  I 
and I1 and has been p lo t t ed  i n  f igure  4 f o r  0 = 2 and 1. An increase i n  gas 
ra refac t ion  and/or a decrease i n  t h e  value of t he  accommodation coeff ic ient  
produces a decrease i n  the  heat-flux requirement, at  a given a x i a l  posit ion,  
over that f o r  continuum gas flow. This is reasonable, s ince the  thermal con- 
t a c t  res is tance e f f e c t  of t he  temperature jump tends t o  overpower the decrease 
i n  thermal res is tance associated with veloci ty  s l i p  (especial ly  i f  the  accommo- 
dation coef f ic ien t  has a. lower specif ied value) and thus increases the r e s i s -  
tance t o  heat t r ans fe r  t o  the  gas from the w a l l 3  consequently, the  w a l l  heat- 
f lux requirement decrea.ses. The w a l l  heat-flux requirement, at a given a x i a l  
posit ion,  however, i s  s l i g h t l y  greater  f o r  t he  channel with a w a l l  temperature 
change a t  the  upper w a l l  only than f o r  the channel with a s t e p  change i n  tem- 
perature at  both walls. 

The var ia t ion  i n  l o c a l  Nusselt nmber along the  channels can be evaluated 
The from equation (23) and from the  nunerical information i n  tab les  1 and 11. 

f u l l y  developed heat-transfer condition occurs f o r  x/2L su f f i c i en t ly  large s o  

0 .02 

Rarefaction 
parameter, +} 

- 1  1 I 
Accomhcdation 

coefficient, 
a 

1 

10 
Dimensionless axial distance, (xl2L)IRePr 

(a) Symmetry number, 2. (b) Symmetry number, 1. 

Figure 4. - Variation of wall heat f lux following step change in wall temperature for slip flow in parallel-plate channel. 
Specular reflection coefficient, 1; ratio of specific heats, 1.4; Prandtl  number, 0.73. 
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t h a t  only the  f i rs t  term of the  se r i e s  need be considered. Then the  f u l l y  de- 
veloped Nusselt number follows a.s the simple expression Ful ly  de- 
veloped Nusselt numbers thus obtained have been p lo t ted  i n  f igure  5 as a func- 
t i o n  of p -/2pL i n  the  form of a r a t i o  (Nu/NLQ)~, where N u g  represents 

Nw = 4j31. 

Accommodation] 
coefficient, 

0 .04 .08 .12 .16 .m 
Rarefaction parameter, p&$$!pL 

Figure 5. - Fully developed Nusselt number rat io for flow 
in  channel at un i form wall temperature. Specular re- 
flection coefficient, 1; ratio of specific heats, 1.4; 
Prandtl number, 0.73. 

t he  continuum value 7.53 f o r  cr = 2 or 
9.70 f o r  cr = 1- The e f f ec t  of gas 
raregaction is t o  decrease the  value of 
the  Nusselt number below i t s  continuum 
va.lue, and the  reduction increases s ig-  
n i f i can t ly  with increasing mean f r e e  
path. 
of gas ra refac t ion  a re  more pronounced 
i n  the  channel with both w a l l s  s tep-  
changed i n  temperature than i n  the  chan- 
n e l  with a change in temperature a t  the  
upper w a l l  only. 
Nusselt number of the specif ied value 
of t h e  accommodation coeff ic ient  i s  evi-  
dent. 

It i s  noteworthy that the  e f f ec t s  

The e f fec t  on the  

The var ia t ion  i n  N u s s e l t  number 
a.long the  channel with a s t e p  change i n  
w a l l  temperature a t  one or both wa.lls 
has been evaluated and p lo t ted  i n  f i g -  
ure 6. The e f f ec t  of t he  gas rarefac-  
t i o n  i s  always t o  decrease the  Nusselt 
number below i t s  continuum value a t  
every posi t ion along the  heated length. 
It is in te res t ing  to note t h a t  t he  
Nusselt number var ia t ion  f o r  both cr = 2 

and 0 = 1 exhibi ts  trends similar t o  those observed for channels with uniform 
w a l l  heat f l ux  a.t one o r  both w a l l s  (ref.  , 3 ) .  
w a l l  temperature, however, l i e  somewhat lower than those f o r  uniform w a l l  heat 
f l u x  f o r  both cr = 2 and CT = 1, with differences becoming negl igible  f o r  
higher values of p */2pL and lower values of a. 

The values of Nu f o r  uniform 

RAREFIED GAS FLOW I N  A CIRCTJLAR TUBE I%LTH STEP 

CHANGE I N  WALL TEMFERATURE 

Attention i s  now directed t o  the f u l l y  developed laminar flow of a s l igh t ly  
ra ref ied  gas through a c i rcu lar  tube as i l l u s t r a t e d  i n  f igure  7. 
the  tube and the  gas a re  assumed t o  be isothermal a t  temperature 
f o r  x 2 0 the  tube i s  step-changed t o  a new va.lue of tw. 

The energy equation analogous t o  equation (1) is 

For x < 0 
te, whereas 



I Ill1 Ill I1 I I 

J 
ct 

0 .02 .04 .06 .ox .10 
Dimensionless axial 

(a) Symmetry number, 2. 

0 .W .ox .12 .16 .a 
distance, (x /a ) /RePr  

(b) Symmetry number, 1. 

Figure 6. - Variation of local Nusselt number along channel for un i fo rm wall temperature. Specular reflection coeffi- 
cient, 1; ratio of specific heats, 1.4; Prandtl number, 0.73. 

This is  rewr i t ten  i n  terms of dimensionless var iables  t o  y i e ld  

The veloci ty  d is t r ibu t ion ,  s l i p  velocity,  and average ve loc i ty  have been given 
i n  reference 1, The use of these expressions leads t o  the  dimensionless veloc- 
i t i e s  u/u and us/E as 

\ 
u -  
U 

1 - (u2 4- 40 
14-80 I ,= f4u) = 2 

for 0 E Eu/d ( 5 3 )  

US 80 
1 -!- 80 = =  f (1 )  = 

U I 
Equation ( 5 2 )  i s  to be solved subject t o  boundary conditions similar t o  

those specif ied f o r  t he  para l le l -p la te  channel 

Figure 7. - Physical model and coordinate system for c i rcular and 
tube. 
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a t  w = l  ( 54b 

Equation (54b) a r i s e s  from consideration of the temperature- jump condition a t  
the  tube wa.11. 

A product solut ion of equation (52) of t he  following form i s  employed 

T = X($) - R(u) (55) 

When t h i s  i s  inser ted  i n t o  equation (52), the  solut ion f o r  
as 

T can be wri t ten 

where the  pm and R, are  the  eigenvalues and corresponding eigenfunctions of 
the  Sturm-Liouville system 

with the  boundary conditions 

a t  w = O  a%, - = o  
dco 

The coeff ic ients  cm are  evaluated f romthe  boundary condition that 
T = 1 
it i s  found tha t  cm m u s t  s a t i s f y  

art the tube entrance ($ = 0 ) .  Applying t h i s  condition t o  equation (56), 

From t he  properties of the  Sturm-Liouville system, it follows immediately t h a t  

e, = (59) 
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”he technique used f o r  evaluating the  coeff ic ients  
channel (appendix B) i s  completely applicable here, and it can be shown t h a t  
t he  solut ion f o r  t he  coeff ic ients  cm reduces -to 

bn f o r  t he  para l le l -p la te  

The functions ~ ( L D )  and the  corresponding eigenvalues Pm a re  as yet 
undetermined. The analysis w i l l  be extended a t  t h i s  point,  however, t o  the  
formula.tion of t he  quant i t ies  of engineering in t e re s t .  From the  temperature 
d is t r ibu t ion  given by equation (56) ,  t he  axial var ia t ion  of the  gas tempera.ture 
adjacent t o  the  w a l l ,  t he  w a l l  hea.t-flux var ia t ion  required t o  ma.intain the  
w a l l  temperature constant, and the Nusselt number var ia t ion  along the  tube . 

length may be computed from t h e i r  respective def ini t ions:  

co 

m = l  

w 

m=l 

co 

. .  .. . 
m = l  

= 2  
00 

m = l  
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RADIAL DISTRIBUTION FUNCTION R(w) 

To determine the behavior of equation (57 )  (a t  la rge  parameter p ) ,  t he  
method used i n  solving the  para l le l -p la te  system can be adopted pract ica . l ly  
unchanged. The r e s u l t s  a r e  

COS T + s i n  T 

48 R ( 1 )  = -@ ( 

and 

(1 -  COS T + s i n  T )  - 4 ~ ( 4 e )  312 s i n  T - cos T 

K 1  4- 
- _  

160 40 

where 

The eigenvalues a r e  determined from t he  second boundary condition given i n  
equation (57b), which requires  t h a t  

Hence, combining equations (64) and (65) i n  accordance with this requirement, 
t he  eigenvalues pm a r e  obtained as roots of the  charac te r i s t ic  equation 

M-rm + N 
t a n  T~ = M T ~  - N (68) 

where 
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d 

g z  
g .: Y 1.5 

.E 5 
a L  .= m 

- 
O L  

3- 
,e 
2 & 1.4 
- 

J E t  N = 48 + (1 - 48) - d 

- 
1 

-~ 
From the  equations resented s o  

1- ~~ far, the  expressions (aRTau),, and 

- ~ 

~~ P=Pm 
[a2R/au aP 1-1 can readi ly  be eval-  

MT, - N 

The slope 
expressed as 

dR/du evaluated at the tube w a l l  (eq. ( 6 5 ) )  can be a . l ternat ively 

M 

Hence 
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p- 

Table III shows the  first f o u r  eigenvalues and constants f o r  s l i p  flow i n  
a c i rcu lar  tube. 
t ab l e  IV and were obtained from reference 10. A l s o  shown i n  t ab le  I11 are  the 
data obtained through the  use of an IBM 7094 computer by the Runge-Kutta meth- 
od. The numerical solutions were car r ied  out i n  a manner which pa ra l l e l s  that  
already described f o r  the  para l le l -p la te  channel system. It should be noted 
that % ( O )  = 1 f o r  a l l  m. The asymptotic formula f o r  pm yields  values of 
suf f ic ien t  a.ccuracy for m 2 2, while the  agreement f o r  t he  various constants 
depends on the  parameters us/E and St/d. The var ia t ion  of t he  temperature 
of the gas adjacent t o  the  w a l l  along the  length of the  tube has been evaluated 
and p lo t ted  i n  f igure  9. The trends are  qua l i ta t ive ly  similar t o  those evident 
i n  the para l le l -p la te  channel system. 

The r e s u l t s  f o r  continuum flow (%/E= 0) are  presented i n  

TABLE 111. - EIGENVALUES AND CONSTANTS FOR SLIP FLOW IN TUBE W I T H  UNIFORM W A I L  TEMPEIIATURF1 

Ratio of slip to average velocity, us/E’ 

2/5 213 I 
I 

Temperature-jump coefficient, St/d 

I 1.6 i 0.4 0.1333 0.5333 
I I 

Solution 

4nalytical 

1.373 

3.260 

5.155 

7.100 

.1840 

-. 2340 

.2581  

-. 2588 

-. 6650 

1.006 

-1.063 

1.030 

.9150 

-. 4185 

.3300 

-. 2419 

Numerical 

1.205 

3.085 

5.029 

7.008 

.2472 

-. 2773 

.2723 

-. 2582 

-. 9273 

1.040 

-1.021 

.9682 

1.408 

-. 6471 

.3978 

-. 2738 

2nalytical 

1.208 

2.980 

4.905 

6.875 

.3740 

-. 3961 

.3485 

-. 3081 

-. 3480 

.3725 

-. 3210 

.2908 

.4845 

-. 2282 

-. 1325 

-. 0825 

Numerical 

0.8287 

2.750 

4.755 

6.782 

.5979 

-. 4287 

.3509 

- -3040  

-. 5608 

.4019 

-. 3290 

.2849 

1.201 

-. 2896 

.1385 

-. 0838 

Analytical 

1.065 

2.885 

4.895 

6.975 

.5085 

-. 4125 

.3300 

-. 2780 

-. 6260 

.5140 

-. 4170 

.3460 

.9595 

-. 3471 

.1695 

-. 1045 

Vumer ical 

0.9372 

2.837 

4.882 

6.964 

.5472 

-. 4070 

.3252 

-. 2765 

-. 6838 

.5086 

-. 4062 

.3453 

1.250 

-. 3585 

.1702 

-. 1 0 4 1  

Rnalytical 

0.7600 

2.695 

4.780 

6.875 

.8050 

-. 4520 

.3400 

-. 2835 

-. 2515 

.1445 

-. 1070 

.0926 

. a 5  

-. 1050  

.0460 

-. 0259 

Numerical 

0.5331 

2.663 

4.774 

6.887 

.8406 

-. 4406 

.3353 

-. 2809 

-. 2627 

.1377 

-. 1048 

.OB78 

1.079 

-. 1077 

.0442 

-. 0242 

25 



I lllIIllllllllll1l111l I1 IIIIIIIII I 1  I I I I I 

TAELE IV. - EIGENVALUES AND 
COEFFICIENTS FOR C0NTI"M 

FLOW IN CIRCULAR TUBE WITH 

TJNIFORM WAIL TEMPEEAT'URF 

[ D a t a  f r o m  ref. 101 

1.351 

3.340 

5.337 

7.336 

1.500 

1.088 

.9255 

.8308 

w 

The w a l l  heat-flux var ia t ion  
required t o  maintain the  tube 

Rarefaction 
parameter, 

v) m W 

lz 0 

m 
c 

- 
.- 
E .- 
n 

0 .02 .M .06 .08 .10 
Dimensionless axial distance, (x/ro)/RePr 

Figure 9. -Var iat ion of gas temperature adjacent to wall 
for slip flow in c i rcu la r  tube. Specular reflection co- 
efficient, 1; rat io of specific heats, 1.4; Prandt l  
number. 0.73. 

w a l l  temperature constant is shown 
i n  f igure  10, Increased gas ra re-  
f ac t ion  and/or decreased value of accommodation coeff ic ient  decrease the  heat- 
f l u x  requirement, as was  the  case i n  the  para l le l -p la te  channel system. 

The var ia t ion  i n  Nusselt number along the  tube with a s t e p  change i n  w a l l  

For the  values of 
temperature has been evaluated and plo t ted  i n  f igure  11, 
t o t e s  f o r  the  f u l l y  developed values (achieued for 
t he  parameter 

Also  shown a re  asymp- 
x + 03). 

*/pd considered, the  Nusselt number f o r  (x/ro)/ReFY 2 0.10 
d i f f e r s  l i t t l e  from the  f u l l y  developed 
value - 

, , , , I  

Accommodation 

3 - 
W c 

I 

3 

z2 
L U 

x' 
2 = 
c 
B 1  

5 
c - - 

1 1 1 1 1 1 1 1 1 1 1  

Dimensionless axial distance, (x/ro)/RePr 

Figure 10. - Variation of wall heat f lux  following step 
change in wall temperature for slip flow in  c i rcu-  
lar  tube. Specular reflection coefficient, 1; ratio 
of specific heats, 1.4; Prandt l  number, 0.73. 

0 .02 .M .06 .08 .10 
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DISCUSSION OF UNIFORM WALL HEAT-FLUX 

AND UNIFORM WALL-TENB3RATLSRE 

RESULTS 

It i s  i l luminating t o  present a qual- 
i t a t i v e  picture  of t he  uniform w a l l  heat- 
f l u x  and uniform wall-temperature r e su l t s  
under sl ip-flow conditions i n  order that 
the  s ign i f icant  physical  mechanisms and 
fea tures  of gas ra refac t ion  stand out more 
clear ly ,  unobscured by the  mathematics. 
To t h i s  end, t he  r e su l t s  of reference 3 
and the  present r e s u l t s  a re  presented and 
compared i n  a qua l i ta t ive  fashion. 
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0 

3 - 

-_  

.02 
Dimensionless axial distance, (x/ro)/RePr 

Figure 11. - Variation of local Nusselt number along tube 
for un i form wall temperature. Specular reflection co- 
efficient, 1; ratio of specific heats, 1.4: Prandtl  num-  
ber, 0.73. 

Uniform Wall Heat Flux (Ref. 3) 

The longitudinal var ia t ion of the  
bulk tempera.ture, t he  temperature of t he  
gas adjacent t o  the  w a l l ,  a.nd the  w a l l  
temperature corresponding t o  a uniform 
heat f l u x  along the  duct length i s  
sketched i n  f igure  lZ(a>. 
fact ion,  t he  w a l l  temperature t,, a t  a 
given axial location, is increased above 
the  corresponding continuum-flow value. 
Then the  wall-to-bulk temperature d i f f e r -  
ence f o r  s l i p  flow (tw - tb)sf is  greater  
than the corresponding difference for con- 
tinuum f low (t, - tb lc f .  
Nusselt modulus Nu i s  inversely propor- 
t i o n a l  t o  t, - t b ,  it i s  c lear  tha.t 
(Nu)sf 5 ( N u ) c f f  Hence, the  gas rarefac- 
t i o n  reduces the  Nusselt modulus below 
i t s  continuum value a t  a l l  posit ions along 
the  duct. 

With gas rare-  

Since the  

Uniform W a l l  Temperature 

Figure 12(b) i l l u s t r a t e s  the  longitu- 
d ina l  var ia t ion  of w a l l ,  contiguous gas, 

and bulk temperatures along a duct as the r e s u l t  of a s t e p  change i n  w a l l  tem- 
perature. I n  the  absence of gas rarefact ion,  the  gas adjacent t o  the w a l l  
assumes the w a l l  temperature. 
t, along the  duct length. 

With gas rarefact ion,  tg i s  always l e s s  than 
I n  addition, the  ra refac t ion  decreases the  bulk 

,,-tg (continuum flow) = (continuum flow) 

Dimensionless axial distance, (x/ro)/RePr or (xl2L)IRePr 

(a) Uniform wall heat flux. (b) Uniform wall temperature. 

Figure 12. - Longitudinal variation of temperatures. 
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temperature below i t s  continuum value a t  a l l  a x i a l  locations along the  duct. 
Then, s ince 
the  uniform w a l l  heat-flux case, (tw - 
hence (Nu)sf I (Nu)cf, 
form w a l l  temperature, t he  Nusselt numbers f o r  s l i p  flow are  lower than those 
f o r  continuum flow. 

tw i s  constant along the  duct length, it i s  apparent t ha t ,  as i n  
is  grea te r  tha.n (tw - t b )c f ,  and 

Consequently, f o r  both uniform w a l l  heat f l ux  and uni- 
tb)sf  

CONCLUDING REMARKS 

An analysis  has been car r ied  out t o  study laminar, forced-convection heat 
t r ans fe r  t o  a s l i g h t l y  r a re f i ed  gas flowing between p a r a l l e l  p la tes  o r  i n  a 
c i rcu lar  tube with the  conduit w a l l s  kept a t  constant temprature .  The w a l l  
hea.t-flux requirement and the Nusselt number i n  both the  entrance and f u l l y  
developed regions can be obtained as functions of t he  mean f r e e  path. Asymp- 
t o t i c  solutions supplying accurate knowledge of t he  higher eigenvalues and 
important constants a r e  presented- Results a r e  presented graphically, and, 
thus, the  heat-flux requirements and N u s s e l t  numbers f o r  the  conduits can be 
determined quickly and easily.  A qua l i ta t ive  explanation of rarefact ion e f -  
f e c t s  i n  which the  more important physical aspects of t he  problem are  repre- 
sented has been given. 

There a re  a few f i n a l  remarks that should be made with reference t o  t h e  
analyses. More complicated w a l l  boundary conditions than those considered here 
could be t reated,  For example, the  para l le l -p la te  channel could be t r e a t e d  f o r  
t he  case of unequal w a l l  temperatures. This would require  the  determination 
of a.n additiona.1 s e t  of eigenvalues and constants, the  so-called odd eigencon- 
s t an t s  ( r e f s ,  11 and 12), such t h a t  the complete solut ion t o  the  case of un- 
equal w a l l  temperature i s  obtained by superposing these odd quant i t ies  with the  
even eigenvalues and constants t h a t  have been determined i n  the present study, 
eigenconstants f o r  the  case u 2 2,  A t  f i r s t  glance, it might appear t h a t  t he  
r e su l t s  f o r  t he  present case u = 1 could be a l so  used t o  obtain the case of 
unequal w a l l  temperatures. The adiabatic w a l l  boundary condition (at/ay), = 0 
f o r  t he  case (5 = 1, however, produces an axial temperature var ia t ion  along 
that w a l l ,  and hence the  boundary conditions of constant, but unequal, w a l l  
temperatures would not  be s a t i s f i e d  upon the  use of t he  present case u = 1- 
The r e su l t s  f o r  the  case of (5 = 1 would be useful,  of course, in the  consid- 
erat ion of boundary conditions such as constant heat f lux on one w a l l  and con- 
s t a n t  temperature on the  other ( ref .  13). 
out f o r  other geometries such as the  annulus. 

The analysis  could a l s o  Be car r ied  

Several other,  l e s s  frequently considered, ra refac t ion  e f fec ts  have been 
c i t ed  i n  the  l i t e r a tu re .  
a ture  jump ( re f ,  15), and thermal creep veloci ty  ( refs .  4 and 5). 
cation due t o  each of these addi t ional  ra refac t ion  e f f ec t s  of the f u l l y  de- 
veloped heat-transfer charac te r i s t ics  f o r  laminar flow i n  tubes has been con- 
sidered i n  reference 1, None of these ra refac t ion  e f f ec t s  have been considered 
i n  the  present analyses. The first two s l i p  e f f ec t s  can be incorporated i n  the  
present study without too  much d i f f icu l ty ;  t he  basic  procedures a re  i l l u s t r a t e d  
i n  reference 1 ( fo r  ful ly  developed heat t r ans fe r ) .  
add l i t t l e  t o  what has been s a i d  i n  reference 1 concerning these effects.  

These a re  w a l l  shea.r work (ref .  14), modified temper- 
The modifi- 

Further discussion would 

i 

28 



Inclusion of the  thermal creep veloci ty ,  however, would give r ise t o  an 
extremely complicated mathematical problem, f o r  then the  temperature and veloc- 
i t y  f i e l d s  a re  mutually interdependent. For example, the  slip-flow boundary 
conditions f o r  the  para l le l -p la te  channel system (eqs. ( 2 )  and (3) o r  ref .  3) 
m u s t  be a l t e r ed  t o  read, respectively,  

us = *eu(@ + f o r  o = 1 

The second term on the  r igh t  s ide of each of these equations represents t he  
therma.1 creep effect .  

The.therma1 creep ve loc i ty  e f f ec t  would be expected to moderate the  re -  
sults given here. A more precise  study t h a t  would account f o r  the  thermal 
creep veloci ty  i s  cer ta in ly  wel l  i n  order. The r e s u l t s  given here represent 
the spec ia l  case when the  thermal creep veloci ty  i s  negligible.  From these 
r e su l t s ,  however, it has been possible t o  provide a physical i n t e rp re t a t ion  of 
the rarefact ion e f f ec t s  f o r  d i f fe ren t  thermal-boundary conditions. I n  addition, 
from the r e s u l t s  the design engineer can make a rapid, reasonably accurate 
estimation of s l i g h t  ra refac t ion  e f f ec t s  on heat t r ans fe r  t o  gases flowing i n  
conduits. 

Lewis Research Center 
National Aerona.utics and Space Administration 

Cleveland, Ohio, August 25, 1964 
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APPENDIX A 

A 

a 

B 

E 

11 

J 

J1 

K1 

L 

SYMBOLS 

in tegra t ion  constant, [f 01 J 1/4/2 

accommodation coeff ic ient  

in tegra t ion  constant, [f(O)ll/4/2 

coeff ic ient  defined by eq. (38) 

coef f ic ien t  in s e r i e s  expansion f o r  para l le l -p la te  channel 

coeff ic ient  defined by eq, (72)  

coef f ic ien t  i n  s e r i e s  expansion f o r  c i r cu la r  tube 

spec i f i c  heat of gas 

hydraulic diameter f o r  para l le l -p la te  channel, 4L 

thermal diameter f o r  para l le l -p la te  channel, 8L/o 

tube diameter, 2r0 

constant defined by eq, (34) 

constant defined by eq, (46) 

dimensionless ve loc i ty  f o r  para l le l -p la te  channel, u( v)/U 

dimensionless veloci ty  f o r  c i rcu lar  tube, u( u)/E 

specular r e f l e c t i o n  coeff ic ient  

heat- t ransfer  coeff ic ient ,  q / ( h  - t b )  

indef in i te  i n t eg ra l  defined by eq, (29)  

de f in i t e  i n t eg ra l  defined by eq, (33) 

indef in i te  i n t eg ra l  defined by eq. (41) 

de f in i t e  i n t e g r a l  defined by eq, ( 4 5 ) ~  Jl = Il 

def in i te  i n t eg ra l  defined by eq, (67) 

half-distance between p la tes  

2 mean f r e e  path 
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M 

N 

Nu 

Pr 

Re 

r 

constant defined by eqs. (69)  

constant defined by eqs. (69) 

Nusselt number, +/K f o r  para l le l -p la te  channel, hd/K f o r  c i rcu lar  
tube 

Prandtl number, pcJK 

gas pressure 

r a t e  of heat t r ans fe r  per un i t  area from w a l l  to gas 

r a d i a l  d i s t r ibu t ion  function f o r  circula.r tube 

gas constant 

eigenfunctions of eqs. (57)  

slope of R(cu) a t  tube w a l l  

Reynolds number, 2PiiLt/p f o r  para l le l -p la te  cha.nne1, PCd/p f o r  c i rcu-  
lar  tube 

radial coordinate 

tube radius 

dimensionless temperature difference, {t - tw)/(te - tw) 

r0  

T 

t gas temperature 

temperature of gas adjacent t o  w a l l  % 
U gas veloci ty  

X axial d is t r ibu t ion  function 

X axial coordinate 

Y transverse d i s t r ibu t ion  function f o r  para l le l -p la te  channel 

Yn eigenfunctions of eqs. (11) 

Y'(1) slope of Y ( 7 )  a t  heated w a l l  

Y transverse coordinate 

a thermal d i f fus iv i ty ,  K/Pcp 

Pm eigenvalues of eqs- ( 5 7 )  
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eigenvalues of eqs. (11) 

Subscriptsl 

dimensionless temperature- jump coefficient , EJ2L 
ratio of specific heats 

4 Jl 
dimensionless axial distance for psrallel-plate channel, cr2(x/2L)/RePr 

dimensionless coordinate , q/2L 
dimensionless velocity slip coeff icierit , k&/d 

gas thermal conductivity 

dimensionless velocity slip coefficient, EU/2L 

viscosity of gas 

temperature- jump coefficient 

velocity-slip coefficient 

gas density 

symmetry number 

rarefaction parameter , P -/ZpL f o r  parallel-plate channel, 1-1 */pd 
for circular tube 

dimensionless axial distance for circular tube, 4(x/ro)/RePr 

dimensionless coordinate, r/ro 

b 

C 

cf 

d 

e 

S 

32 

bulk condition of gas 

centerline 

c ont inum flow 

fully developed region 

entrance, x = 0 

slip 



sf slip flow 

W condition at wall 

0 continuum-flow condition 

Superscript : 

(-1 average value 
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APPENDIX B 

EVALUATION OF SERIES COEFFICIENTS bn 

The coef f ic ien ts  of the s e r i e s  expansion (eq. (10)) a re  determined as the 
quotient of two in t eg ra l s  (eq. (13)) : 

bn = 

With the  use of equation ( l l a ) ,  the  in t eg ra l  appearing i n  the  numerator may be 
wr i t ten  as 

s ince (dYn/aq) = 0. 114 
To evaluate the  i n t e g r a l  i n  the  denominator of equation ( B l ) ,  l e t  

and Yn be the  solut ions associated with two d i s t i n c t  values of p ,  pv, and 
pn. T h i s  means t h a t  

Y, 

and 

The f i r s t  equation is multiplied by Yn and the  second by Y,, and then the  
second equation i s  subtracted from t he  f i rs t .  
i s  

The r e s u l t ,  a f t e r  transposing, 
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P 
$ 

If  this is integrated between 0 and 1, the  following is  obtained: 

where Y v ( q , P v )  and Yn(7,Pn) f o r  v f n a re  orthogonal functions with respect 
t o  the  weight function f ( q ) j  that is, 

YvYnf(q)dq = 0 f o r  v # n a' 
This property of t he  eigenfunctions w a s  used i n  obtaining equation (Bl). 

If  Pv = Pn, the  in t eg ra l  on the  l e f t  s ide  of equation (B3) becomes the  
in t eg ra l  of the  square of the  charac te r i s t ic  function: 

The expression on the  r igh t  assumes the  indeterminate form Hence, it i s  
necessary t o  apply 1 'Hospi ta l ' s  ru l e  and d i f f e ren t i a t e  numerator and denomina- 
t o r  with respect t o  Pv before se t t i ng  P v  = Pn. Carrying out this d i f f e r -  
en t ia t ion  r e su l t s  i n  

O/O. 

Near q - 0, the  normalization convention Y,(O) E 1 as well  a.s t he  boundary 
condition dYddq = 0 a t  q that the  solut ion t o  equation (11) 
be given by Yn(q - 0) = cos( Hence, at  q = 0, 
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Yn(0) = 1 

and 

Thus, equa.tion (B5)  reduces t o  

* 

In to  this expression, there  i s  now subs t i tu ted  the  boundary condition 

This gives 

Theref ore 

If 
simpler form 

Et-ZL = 0, t h a t  i s ,  i f  the  bounda.ry condition a t  7 = 1 i s  of t he  

Y n ( l )  = 0 

the  correct so lu t ion  i s  obtained by s e t t i n g  Y n ( l )  = 0 i n  equation ( B 5 ) .  This 
gives 
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Theref ore 

et 
bn = - for E= 0 

P=P, 

This result resembles the equation for the continuum-flow coefficients (ref. 7). 

37 



REFEE3NCES 

1. Sparrow, E. MI, and Lin, So H,: Laminar Heat Transfer i n  Tubes Under Sl ip-  
flow Conditions. 
no. 4, Nov. 1962, pp. 363-369. 

2, Deissler, R. G,: An Analysis of Second-Order S l i p  Flow and Temperature- 
jump Boundary Conditions f o r  Rarefied Gases. In t .  Jour, Heat and Mass 
Transfer, vol, 7, no+ 6, June 1964, pp. 681-694, 

o r  a Round Tube With Uniform Wall Heating. 

Jour. Heat Transfer (Trans ,  ASME), ser. C, vol. 84, 

3. I m n ,  R .  M.:  Laminar S l i p  Flow Heat Transfer i n  a Paral le l -Plate  Channel 
NASA TN D-2393, 1964. 

4. Kennard, E. H.: Kinetic Theory of Gases. McGraw-Hill Book Co., Inc., 

5. Schaaf, S, A,,  and Chambre, P. L.: Flow of Rarefied Gases. Princeton 

6, Dzung, L. S.: Heat Transfer i n  a F l a t  Duct with Sinusoidal Heat Flux D i s -  

1938, p .  291. 

Univ. Press, 1961, p. 34. 

t r ibu t ion ,  Proc. Second U.N. Conf, on Peaceful Uses of Atomic Energy 
(Geneva), vol, 7, 1958, pp. 671-675, 

Flow i n  a Round Tube or F l a t  Conduit - The Graetz Problem Extended. 
Trans. ASME, vol. 78, no. 2,  Feb. 1956, pp. 441-448. 

8, Merzbacher, E.1 Quantum Mechanics, John Wiley & Sons, Inc. ,  1961, p. 112, 

9. C a r s l a w ,  H. S., and Jaeger, J. C.: Conduction of Heat i n  Solids. Oxford 

7. Se l la rs ,  J. R., Tribus, M., and Klein, J. S, :  H e a t  Transfer t o  Laminar 

Univ. Press, 1959, p. 491. 

Distribution. Proc, Second U.N. Conf. on Peaceful Uses of Atomic Ehergy 
(Geneva), vol, 7, 1958, pp. 657-670, 

Pa ra l l e l  P la tes  with Unsymmetrical Wall Temperatures. 
Sci., vol. 26, no. 8, Aug, 1959, p. 538. 

12. Hatton, A, P., and Turton, J. S.1 Heat Transfer i n  the  Thermal Entry 
Length With Laminar Flow Between Pa ra l l e l  Walls a t  Unequal Temperatures. 
I n t ,  Jour. H e a t  andMass Transfer, vol, 5, 1962, pp, 673-679. 

10. Dzung, L, S,! Heat Transfer i n  a Round Duct with Sinusoidal Heat Flux 

11. Cess, R. D o ,  and Shaffer, E. C.: Summary of Laminar Heat Transfer Between 
Jour, Aero/Space 

13, Lundberg, R, E., Reynolds, W. C., and Kays, W, M.1 Heat Transfer with 
Laminar Flow i n  Concentric Annuli with Constant and Variable Wall Tem- 
perature with Heat Flux, NASA TN D-1972, 1963. 

vol, 25, no. 6, June 1958, pp. 400-401. 

t o  a Flat Plate.  Jour. Aero. Sci., vol .  26, no. 2, Feb. 1959, pp. 126- 
127. 

14. Maslen, Stephen H.: On H e a t  Transfer i n  S l i p  Flow. Jour.  Aero. Sci., 

15. Oman, Richard A, ,  a.nd Scheuing, Richard A.: On Slip-Flow Heat Transfer 

38 NASA-Langley, 1964 E-2667 



“The aeronazitical and space activities of the United States shdl be 
conducted so as to contribute . . . to the expansion of hziman hiowl- 
edge of phenomena in  the atmosphere and space. T h e  Adminictration 
shall provide for the widest practicable aiid appropride di~semination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL. PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results -of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADM I N ISTRATI 0 N 

Washington, D.C. 20546 


